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Abstract. We use the maximum-entropy variational technique to infer solutions to second-
order partial differential equations. We restrict ourselves to problems with Dirichlet boundary
conditions. First, we construct a basis of moment functions in terms of which we set up the
constraints for a maximum entropy inversion for the inference of solutions to elliptic equations.
Then we extend the scheme to the inference of time dependence in evolution equations. This
extension is done by solving a small system of first-order initial-value differential equations for
the moments of the solution vector.

1. Introduction

The application of variational techniques to the approximation of solutions to boundary-value
problems (BVPs) is well established [1]. In these techniques, the BVP is transformed into
a variational boundary-value problem (VBVP) which has certain computational advantages
over the original BVP. The important advantage, under certain conditions, is that the VBVP
is equivalent to a minimization problem that can be solved by a suitable choice of a small
number of basis functions.

The maximum-entropy method (MaxEnt) [2–4], based on information theory [5–7], is
a powerful inference technique that has been applied in many areas [8–10]. The recent
MaxEnt scheme of Baker-Jarvis and his collaborators [11–13] has formulated BVPs in
terms of VBVPs expressed as a set of moment equations in a one-dimensional grid. The
solution vector is found as averages over a normalized probability distribution determined
by maximizing an entropy or information measure with constraints provided by the VBVP
and a condition of a fixed norm on the solution vector. The advantage of this framework is
that the solution is expressed by a simple product of matrices independent of the Lagrange
multipliers. The outstanding problem in the Baker-Jarvis scheme was the construction of
basis moment functions such that the VBVP equation provides, for a small set of basis
functions, optimum information for the maximum entropy inversion. An efficient basis for
one-dimensional linear BVPs has just been developed [14].

The main aim of this work is the development of a MaxEnt method for the inference
of solution to second-order partial differential equations (PDEs). This involves the
determination of an efficient basis or moment functions in two dimensions. In addition, such
a basis is useful in the inference of solutions to evolution equations. An application to simple
time-dependent problems involving one space dimension has recently been done, yielding
very good approximation to analytical solutions [15]. This inference of time dependence is
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achieved by following the time evolution of a few moments of the solution function. This
approach is consistent with other MaxEnt methods for this class of problems [16–21].

The work is organized as follows. In section 2 we derive the VBVP for elliptic PDEs
defined over a rectangular domain inR2. In section 3 we propose a two-dimensional moment
basis that is a generalization of the one-dimensional one developed in [14]. In section 4.1 we
give expressions for the matrices that occur in a MaxEnt minimum-norm solution to BVPs
described by elliptic PDEs as well as numerical examples. Section 4.2 gives the extension to
time-dependent problems, i.e. an extension to hyperbolic and parabolic equations. Finally,
conclusions are drawn in section 5.

2. MaxEnt variational boundary-value problem

We consider the BVPs of the form

Lu(x) = f (x) x ∈ Ω ⊂ R2

u = g on 0
(2.1)

where the functiong specifies the value of the unknown functionu on the boundary0 of
a rectangular solution domain� in which the second-order operatorL, of the form

L = a20(x)
∂2

∂x2
+ a11(x)

∂2

∂x∂y
+ a02(x)

∂2

∂y2
+ a10(x)

∂

∂x
+ a01(x)

∂

∂y
+ a00(x) (2.2)

is elliptic. Let ξ ∈ R2 andα = (α1, α2) ∈ Z+2 , then the operatorA is elliptic at the point
x0 ∈ � if ∑

|α|=2

aα(x0)ξ
α 6= 0 (2.3)

whereξα = ξα1ξα2.
We transform the BVP (2.1) to a moment problem by multiplying both sides by an

appropriate basis of functions{vm1m2(x)}, wherem1 = 1, 2, . . . ,M1 andm2 = 1, 2, . . . ,M2,
and integrating over the domainΩ. For the left-hand side, repeated integration by parts is
used to obtain an expression of the form∫

�

vm1m2(x)Lu(x) d� =
∫
0

F (vm1m2, u)ds +
∫
�

u(x)L†vm1m2(x) d� (2.4)

whereL† is the adjoint operator corresponding toL. Our construction of the basis functions
{vm1m2(x)} is such thatvm1m2(x) vanishes on the boundary0.

Transposing the boundary term in (2.4) to the transformed right-hand side of (2.1), we
get the following variational or moment problem corresponding to (2.1): find the solution
u(x) which satisfies the equation

R(vm1m2) =
∫
�

Gm1m2(x)u(x) d� (2.5)

for the basis{vm1m2(x)}, where

Gm1m2(x) = L†vm1m2(x) (2.6)

and

R(vm1m2) =
∫
�

vm1m2(x)f (x) d�−
∫
0

F (vm1m2, u)ds. (2.7)

Now, we discretize the rectangular domain�. Let h1 andh2 be the space steps in the
x1 andx2 directions, respectively, and denoteu(x) by u(x1i , x2j ), wherei = 0, 1, . . . , n1
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and j = 0, 1, . . . , n2, at the grid points. Then the integral on the right-hand side of (2.5)
is replaced by the sum over the internal nodal points and the boundary terms are absorbed
into the expression forR(vm). This results in the following replacement:∫

�

Gm1m2(x)u(x) d�→
n1−1∑
i=1

n2−1∑
j=1

Gm1m2(x1i , x2j )u(x1i , x2j ).

It is convenient to transform the two-dimensional(i, j) grid into a one-dimensional one
by the transformation

(i, j)→ γ = i + (n1− 1)(j − 1)

γ = 1, 2, . . . , nt nt = (n1− 1)(n2− 1).
(2.8)

For a givenγ , the inverse transformation is

x1(γ ) = a + h1(Mod(γ − 1, n1− 1)+ 1)

x2(γ ) = c + h2(I ((γ − 1)/(n1− 1))+ 1)

where I (m/n) denotes the greatest integer less than or equal tom divided by n, and
Mod(m, n) denotesm modulusn. The moment indicesm1 andm2 are similarly collapsed
into one indexm = 1, 2, . . . ,M, whereM = M1M2, by the transformation

(m1, m2)→ m = m1+ (M1− 1)(m2− 1)

m = 1, 2, . . . ,M M = M1×M2.

Then the discretized version of the inverse-moment problem (2.5) is of the form

R(vm) =
nt∑
γ=1

Gmγ uγ . (2.9)

We now define the MaxEnt probability distribution globally over the entire one-
dimensional grid, labelled by the indexγ , and denoted byP(u), where the vectoru is
over the entire gridu = (u1, u2, . . . , unt ). We determine such a probability distribution,
consistent with the information content (2.9), by maximizing the Shannon entropy

S = −
∫ ∞
−∞

P(u) logP(u) du. (2.10)

This MaxEnt variational method has a well known analytical solution [22–24] and the
minimum-norm solution that maximizesS subject to a normalized probability distribution
P(u), the information (2.9) and a fixed norm for the solution vectoru is given by [11–13]

u = Gt (GGt )−1R (2.11)

where the matricesG andR are determined by equation (2.9), their dimensions beingM×nt
andM × 1 respectively.

3. Construction of the moment basis

An efficient moment basis for the solution of one-dimensional BVPs using MaxEnt was
constructed in [14]. For example, for a BVP in the region� = [a, b] the basis is

v(1)m = (x − a)1+I (m/2)(x − b)1+I ((m−1)/2) m = 1, 2, . . . ,M. (3.1)

For the two-dimensional case� = [a, b] × [c, d] the moment basis can be constructed
in either direction according to (3.1) with moment indicesm1 = 1, 2, . . . ,M1 and
m2 = 1, 2, . . . ,M2. The two indices(m1, m2) are then transformed into one indexm
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by a transformation similar to (2.8). The resulting moment function basis constructed this
way can be written in the form

vm(x1, x2) =
(
x1− b
b − a

)p1(m)
(
x1− a
b − a

)p2(m)
(
x2− d
d − c

)p3(m)
(
x2− c
d − c

)p4(m)

m = 1, 2, . . . ,M (3.2)

where

p1(m) = I ((Mod(m− 1,M1)+ 1)/2)+ 1

p2(m) = I (Mod(m− 1,M1)/2)+ 1

p3(m) = I ((I ((m− 1)/M1)+ 1)/2)+ 1

p4(m) = I ((I ((m− 1)/M1))/2)+ 1.

(3.3)

4. Applications

4.1. Time-independent partial differential equations

We consider the strongly elliptic problems of the form

Lu(x) = ∇2u(x) =
(
∂2

∂x2
1

+ ∂2

∂x2
2

)
u(x) = f (x)

� = [a, b] × [c, d]

u(a, x2) = g1(x2) u(b, x2) = g2(x2) x2 ∈ [c, d]

u(x1, c) = r1(x1) u(x1, d) = r2(x1) x1 ∈ [a, b].

(4.1)

For these problems, the solution is of the form (2.11) with the matrixG given by

Gmγ = h1h2[vm,xx(x1(γ ), x2(γ ))+ vm,yy(x1(γ ), x2(γ ))] (4.2)

where vm,xx and vm,yy denote the second derivatives ofvm with respect tox and y
respectively, and the components of the vectorR given by

Rm =
∫
�

vm(x1, x2)f (x1, x2) dx1 dx2

+
∫ b

a

[r2(x1){vm,y(x1, d)− 1
4h2(vm,xx(x1, d)+ vm,yy(x1, d))}

−r1(x1){vm,y(x1, c)+ 1
4h2(vm,xx(x1, c)+ vm,yy(x1, c))}] dx1

+
∫ d

c

[g2(x2){vm,x(b, x2)− 1
4h1(vm,xx(b, x2)+ vm,yy(b, x2))}

−g1(x2){vm,y(a, x2)+ 1
4h1(vm,xx(a, x2)+ vm,yy(a, x2))}] dx2

−h1h2

4

n1−1∑
i=1

[r2(xi)(vm,xx(xi, d)+ vm,yy(xi, d))

+r1(xi)(vm,xx(x1i , c)+ vm,yy(x1i , c))]

−h1h2

4

n2−1∑
j=1

[g2(x2j )vm,xx(b, x2j )+ vm,yy(b, x2j )

+g1(x2j )vm,xx(a, x2j )+ vm,yy(a, x2j )]. (4.3)
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Using the basis (3.2), we obtain the matrixG in the form

Gmγ = vm(x1(γ ), x2(γ ))

[
Z(p3(m), p4(m), x2(γ )− c, x2(γ )− d)

(x2(γ )− c)(x2(γ )− d)
+Z(p1(m), p2(m), x1(γ )− a, x1(γ )− b)

(x1(γ )− a)(x1(γ )− b)
]

(4.4)

where

Z(m, n, a, b) ≡ m(m− 1)b2+ 2mnab + n(n− 1)a2 (4.5)

and the components of the vectorR in the form

Rm = 1

h1h2

∫ b

a

∫ d

c

vm(x1, x2)f (x1, x2) dx1 dx2

+ 1

h1h2

∫ b

a

(x1− a)p1(m)(x1− b)p2(m)[sx(p4(m), p3(m), d − c, x1)

− 1
4{T (p4(m), p3(m), d − c)r2(x1)+ T (p3(m), p4(m), c − d)r1(x1)}h2] dx1

+ 1

h1h2

∫ d

c

(x2− c)p3(m)(x2− d)p4(m)[sy(p2(m), p1(m), b − a, x2)

− 1
4{T (p2(m), p1(m), b − a)g2(x2)+ T (p1(m), p2(m), a − b)g1(x2)}h1] dx2

− 1
4

[ n1−1∑
i=1

(x1i − a)p1(m)(x1i − b)p(m){r2(x1i )T (p4(m), p3(m), d − c)

+r1(x1i )T (p3(m), p4(m), c − d)}

+
n2−1∑
j=1

(x2j − c)p3(m)(x2j − d)p4(m){g2(x2j )T (p2(m), p1(m), b − a)

+g1(x2j )T (p1(m), p2(m), a − b)}
]

(4.6)

where

T (m, n, a) ≡ m(m− 1)anδm,2+ 2mnan−2δm,1

sx(m, n, a, x) ≡ manr2(x)δm,1− n(−a)mr1(x)δn,1
sy(m, n, a, y) ≡ mang2(y)δm,1− n(−a)mg1(y)δn,1.

(4.7)

4.1.1. Numerical example.Now we present numerical examples in the solution of problems
of the form (4.1) using the minimum-norm scheme (2.11) with the matrices given by (4.4)
and (4.6).

As a first example we solve (4.1) with

f (x) = −2 � = [0, 1]× [0, 1]

g1(x2) = 0 g2(x2) = sinh(π) sin(πy)

h1(x1) = h2(x1) = x(1− x).
(4.8)

Figure 1 shows the relative error of the MaxEnt inference, usingM1 = M2 = 8, with
reference to the exact solutionu(x) = sinh(πx) sin(πy) for a grid of sizen1 = n2 = 100.
The errors are very small except near thex2 = 0 boundary where their absolute value is
around 0.03. Hence the percentage error in the MaxEnt inference is generally very small
and is largest at about 3% near thex2 = 0 boundary.
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Figure 1. Relative error of MaxEnt inference, usingM1 = M2 = 8, with reference to the exact
solutionu(x) = sinh(πx) sin(πy) for a grid of sizen1 = n2 = 100 for the problem (4.8).

As a further example we solve (4.1) with

f (x) = (x2
1 + x2

2)e
x1x2 � = [0, 2]× [0, 1]

g1(x2) = 1 g2(x2) = e2x2

h1(x1) = 1 h2(x1) = ex1.

(4.9)

We show the relative error of the MaxEnt inference, usingM1 = M2 = 9, with reference
to the exact solutionu(x) = ex1x2 for a grid of sizen1 = n2 = 100 in figure 2. For this
example, the errors are extremely small with the largest being about 0.01. This region
of appreciable area is a very small subset of the grid and the inference can hopefully be
improved by enlarging the basis sizeM.

4.2. Evolution equations

The MaxEnt inference method developed above is quite useful in the inference of solutions
to evolution equations. The moment basis (3.2) is used to sum the space dependence so
that the PDE is transformed into a small system of ordinary differential equations in the
moments

Am(t) =
∫
�

vm(x)u(x, t)d� m = 1, 2, . . .M. (4.10)

We show how the MaxEnt minimum-norm scheme (2.11) closes, in an approximate way,
the equations of motion ofAm(t), thereby providing the inference of the solutionu(x, t),
through the following example of heat flow in a two-dimensional domain.

We seek an approximate numerical solution to the problem

ut = uxx + uyy 0< x, y,< 1 t > 0

u(0, y, t) = u(1, y, t) = 0 0< y < 1 t > 0

u(x, 0, t) = u(x, 1, t) = 0 0< x < 1 t > 0

u(x, y,0) = 100 sinπx sinπy 0< x, y,< 1.

(4.11)
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Figure 2. Relative error of MaxEnt inference, usingM1 = M2 = 9, with reference to the exact
solutionu(x) = ex1x2 for a grid of sizen1 = n2 = 100 for the problem (4.9).

Taking the moments of the PDE in (4.11) with the basis{vm(x)}, we obtain the following
equations

Am(t) =
∫
�

vm(x)u(x, t)d� (4.12)

d

dt
Am(t) =

∫
�

u(x, t){∇2vm(x)} d�. (4.13)

Eliminating the minimum-norm solution vectoru(x, t) between the equations (4.12) and
(4.13) we obtain the evolution equation of the moment vector in the form

d

dt
A(t) = GG̃(G̃G̃t )−1

A(0) =
∫
�

v(x)u(x, 0) d� m = 1, 2, . . . ,M
(4.14)

whereAt = (A1, A2, . . . , AM), and vt (x) = (v1(x), v2(x), . . . , vM(x)). The matrix G
depends on the space operator∇2 and the boundary conditions of (4.11) and, calculated by
the procedure of the previous sections, is given by

G̃mγ = h1h2vm(x(γ ), y(γ ))

m = 1, 2, . . . ,M and γ = 1, 2, . . . , nt.

The solution vectoru(x, t) on the grid is then inferred as

u(t) = G̃(G̃G̃t )−1A(t) (4.15)

whereA(t) is the solution of the initial-value problem (4.14).
We show the relative error of the inferred (4.15) solution for the example (4.11), on a

grid of sizen1 = n2 = 50 with M1 = M2 = 4, in figure 3 with reference to the analytical
solutionu = 100e−2π2t sinπx sinπy at t = 0.03. The relative error is extremely small at
all points and is of order 10−3.
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Figure 3. Relative error of MaxEnt inferred solution for the example (4.11), on a grid
of size n1 = n2 = 50 with M1 = M2 = 4, with reference to the analytical solution

u = 100e−2π2t sinπx sinπy at t = 0.03.

5. Conclusions

We have derived a numerical procedure based on the MaxEnt minimum-norm method for
the inference of solution to BVPs described by second-order PDEs. We have shown that this
procedure gives a good approximation to the exact solution with relatively little information
for a particular basis of moment functions. Although only problems with Dirichlet boundary
conditions have been considered, it should be possible to extend this procedure to other forms
of boundary conditions, possibly with a minor modification of the basis functions. The basis
suggested here is superior to a Fourier basis that is often used in variational techniques [1]
and has been considered in the context of the MaxEnt minimum-norm method [11–14].

This method is simple in that the inferred solution vector is expressed as a product
of matrices determined by only two matrices,G and R. These two matrices depend only
on the form of the differential operator and on the boundary conditions of the problem.
They are independent of the Lagrange multipliers used in maximizing the entropy subject
to the VBVP constraints. This simplicity of the method makes it a viable alternative to
the well-established approximation methods, such as the method of finite differences. The
speed of the numerical calculation depends on the sizes of the matricesG andR, especially
on the evaluation of the inverse(GGt )−1 which is largely dependent on the conditioning of
the matrix productGGt . Ill-conditioning on the matrixGGt can result in significant errors
in the MaxEnt inversion. A report, by the numerical package used, on the conditioning of
this matrix may serve as a useful guide to the adequacy of the information provided for the
inversion.

The method has the capability to solve a wider class of problems involving evolution
equations with an open space domain, such as the general solution toN -dimensional Fokker–
Planck equations, provided one can choose an appropriate moment basis. Also it promises
to be a robust tool for solving general inverse problems involving differential operators,
such as the inverse problem for the Maxwell equations.
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